Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov type operators in non-divergence form

نویسندگان

  • Marco Di Francesco
  • Sergio Polidoro
چکیده

We prove some Schauder type estimates and an invariant Harnack inequality for a class of degenerate evolution operators of Kolmogorov type. We also prove a Gaussian lower bound for the fundamental solution of the operator and a uniqueness result for the Cauchy problem. The proof of the lower bound is obtained by solving a suitable optimal control problem and using the invariant Harnack inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators

We announce some results obtained in a recent study [14], concerning a general class of hypoelliptic evolution operators in R. A Gaussian lower bound for the fundamental solution and a global Harnack inequality are given.

متن کامل

The Boundary Harnack Principle for Nonlocal Elliptic Operators in Non-divergence Form

We prove a boundary Harnack inequality for nonlocal elliptic operators L in non-divergence form with bounded measurable coefficients. Namely, our main result establishes that if Lu1 = Lu2 = 0 in Ω ∩ B1, u1 = u2 = 0 in B1 \ Ω, and u1, u2 ≥ 0 in R, then u1 and u2 are comparable in B1/2. The result applies to arbitrary open sets Ω. When Ω is Lipschitz, we show that the quotient u1/u2 is Hölder con...

متن کامل

Partial differential equations. -- Gaussian estimates for hypoelliptic operators via optimal control

Partial differential equations. — Gaussian estimates for hypoelliptic operators via optimal control, by UGO BOSCAIN and SERGIO POLIDORO, communicated on 11 May 2007. ABSTRACT. — We obtain Gaussian lower bounds for the fundamental solution of a class of hypoelliptic equations, by using repeatedly an invariant Harnack inequality. Our main result is given in terms of the value function of a suitab...

متن کامل

On Divergence-free Drifts

We investigate the validity and failure of Liouville theorems and Harnack inequalities for parabolic and elliptic operators with low regularity coefficients. We are particularly interested in operators of the form ∂t−∆+ b ·∇ resp. −∆+ b ·∇ with a divergence-free drift b. We prove the Liouville theorem and Harnack inequality when b ∈ L∞(BMO) resp. b ∈ BMO−1 and provide a counterexample demonstra...

متن کامل

Uniformly Elliptic Operators on Riemannian Manifolds

Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006